In this problem agent share his endowment of time value on: Leisure and Labour where labour may be used on production of good X or/and production of good Y

Effective Labour (=Labour Supply*LPROD)is created via 100\% of Labour Suply

Market clearing conditions:
for labor is $\mathrm{LPROD}^{*} \mathrm{LS}=\mathrm{CX} * \mathrm{X}+\mathrm{CY}^{*} \mathrm{Y}$
for leisure is $120=1^{*} \mathrm{LS}+1^{*}(120-\mathrm{LS})$

Agent has 3 different Demands (good X, good Y, Leisure $): \quad \max U(X, Y, L)=\ln (X)+\ln (Y)+\ln ($ leisure $)$ s.t. $P x^{*} X+\mathrm{Py}^{*} \mathrm{Y}=\mathrm{PL}^{*} \mathrm{LS}{ }^{*}$ LPROD

```
SCALAR LPROD AGGREGATE LABOR PRODUCTIVITY /1/,
$ONTEXT
$MODEL:LSUPPPLY
$SECTORS:
    X ! SUPPLY=DEMAND FOR X
    Y ! SUPPLY=DEMAND FOR Y
    LS ! LABOR SUPPLY
$COMMODITIES:
    PX ! MARKET PRICE OF GOOD X
    PY ! MARKET PRICE OF GOOD Y
    PL ! MARKET WAGE
    PLS ! CONSUMER VALUE OF LEISURE
$CONSUMERS
    RA ! REPRESENTATIVE AGENT
```

 CX COST OF X AT BASE YEAR PRODUCTIVITY /1/
 CY COST OF Y AT BASE PRODUCTIVITY /1/;
 \$PROD:LS
$\begin{array}{ll}0: P L & Q: L P R O D \\ I: P L S & Q: 1\end{array}$
\$PROD: X

$O: P X$	$Q: 1$
$I: P L$	$Q: C X$

\$PROD: Y

E:PLS	$\mathrm{Q}: 120$	
D:PLS	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
$\mathrm{D}: \mathrm{PX}$	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
$\mathrm{D}: \mathrm{PY}$	$\mathrm{Q}: 1$	$\mathrm{P}: 1$

\$OFFTEXT
\$SYSINCLUDE mpsgeset LSUPPLY
\$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;

	LOWER	LEVEL	UPPER	MARGINAL
-- VAR X	-	40.000	+INF	-
---- VAR Y	-	40.000	+INF	-
---- VAR LS	-	80.000	+INF	-
--- VAR PX	-	1.000	+INF	-
---- VAR PY	-	1.000	+INF	-
---- VAR PL	-	1.000	+INF	-
---- VAR PLS	-	1.000	+INF	-
---- VAR RA	-	120.000	+INF	-

Conclusion: Consumer (\$DEMAND:RA) decides how long to work using "labor production function" (\$PROD:LS) and endowment (E:PLS). Leisure*PLS = RA - LS**prod*PL

Supplement Material to EXAMPLE 3:

We can use this model to evaluate the wage elasticity of labor supply by increasing labor productivity (by 1%)

Elasticity of labor supply is defined as the percentage change in the LS activity. Uncompensated elasticity (ELS) is directly observable, while compensated elasticity is not directly observable.

Uncompensated elasticity is related to Marshallian demand, i.e. utility is maximised given prices and wealth (how demand changes when price changes, holding money income constant). Compensated elasticity is related to Hicksian demand, i.e. expenditure is minimised keeping the utility constant (how demand changes when price changes, holding "real income" or utility constant). The Slutsky relationship: the total (Marshallian) price effect is equal to the sum of the substitution effect (Hicksian price effect) plus an income effect.

SCALAR	LPROD	AGGREGATE LABOR PRODUCTIVITY /1/,
	CX	COST OF X AT BASE YEAR PRODUCTIVITY /1/,
	CY	COST OF Y AT BASE PRODUCTIVITY /1/
	LSO	REFERENCE LEVEL OF LABOR SUPPLY/1/
	ELS	uncompensated ELASTICITY OF LABOR supply WRT REAL WAGE/1/;

```
$ONTEXT
$MODEL:LSUPPLY
$SECTORS:
    X ! SUPPLY=DEMAND FOR X
    Y ! SUPPLY=DEMAND FOR Y
    LS ! LABOR SUPPLY
$COMMODITIES:
    PX ! MARKET PRICE OF GOOD X
    PY ! MARKET PRICE OF GOOD Y
    PL ! MARKET WAGE
    PLS ! CONSUMER VALUE OF LEISURE
$CONSUMERS:
    RA ! REPRESENTATIVE AGENT
$PROD:LS
    O:PL Q:LPROD
    I:PLS Q:1
$PROD:X
    O:PX Q:1
$PROD:Y
    O:PY Q:1
    I:PL Q:CY
$DEMAND:RA s:1
    E:PLS Q:120
    D:PLS Q:1 P:1
    D:PX Q:1 P:1
    D:PY Q:1 P:1
$OFFTEXT
$SYSINCLUDE mpsgeset LSUPPLY
    - Save last results for LS as LSO
LSO = LS.L;
    - Increase labor productivity
LPROD = 1.01;
$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
ELS = round(100 * (LS.L - LSO) / LSO);
DISPLAY ELS;
```

ROUND means to display integer number. If ELS=0, then without ROUND we will have ELS=0.00000.

	LOWER	LEVEL	UPPER	MARGINAL
-- VAR X	-	40.400	+INF	.
---- VAR Y	-	40.400	+INF	-
---- VAR LS	-	80.000	+INF	-
---- VAR PX	-	0.990	+INF	$-1.772 \mathrm{E}-7$
---- VAR PY	-	0.990	+INF	$-1.772 \mathrm{E}-7$
-- VAR PL	-	0.990	+INF	.
---- VAR PLS	-	1.000	+INF	$-1.754 \mathrm{E}-7$
---- VAR RA	-	120.000	+INF	$5.2626 \mathrm{E}-7$
- 370 PARAMETER ELS		$=$		000 uncompensated ELASTIC ITY OF LABOR supply W RT REAL WAGE

RA=LS $+($ RA $-L S)=80+(120-80)=120$
$P L * L p r o d * L S=P X * X+P Y * Y$, i.e. $1 * 1 * 80=1 * 40+1 * 40$ becomes $0.99 * 1.01 * 80=0.99 * 40.4+0.99 * 40.4$

Conclusion: The increase of labor productivity implies two effects:

1) Income effect: $\operatorname{LPROD} \uparrow \rightarrow \mathrm{PL} \uparrow \rightarrow$ income \uparrow, but we keep income=const (by default this is numeraire) \rightarrow leisure \uparrow
2) Substitution effect: $\operatorname{LPROD} \uparrow \rightarrow$ output \uparrow (because we can produce the same amount of X and Y using less time) $\rightarrow \mathrm{PX} \downarrow$ and $\mathrm{PY} \downarrow \rightarrow$ demand \uparrow on X and $\mathrm{Y} \rightarrow \mathrm{LS} \uparrow$

> substitution effect (labor supply \uparrow) $=$ income effect (leisure \uparrow)
> $\Downarrow \downarrow$
> LS=const since the above effect exactly balance out

Exercise 3A:

One way in which the labor supply elasticity might differ from zero is if there were income from some other source. Let the consumer be endowed with good x in addition to labor. What x endowment is consistent with a labor supply elasticity (wrt nominal wage) equal to 0.15 ?

1. First, we have to $\max U(X, Y, L)=\ln (X)+\ln (Y)+\ln (\mathrm{L})$ s.t.

$$
\mathrm{Px}^{*} \mathrm{X}+\mathrm{Py}^{*} \mathrm{Y}=\mathrm{PLS}^{*}(\mathrm{EL}-\mathrm{L})+\mathrm{Px}^{*} \mathrm{EX}
$$

2. Using results for (EL-L), find the ETA. If the above calculations are done correctly, you will get the following formula for elasticity (ETA):
$\mathrm{ETA}=\delta \mathrm{LS} / \delta \mathrm{PL} * \mathrm{PL} 0 / \mathrm{LS} 0=\left(\mathrm{SHL}^{*} \mathrm{PX}^{*} \mathrm{EX}\right) /\left(\mathrm{PL}^{*} \mathrm{EL}^{*}(1-\mathrm{SHL})-\mathrm{SHL}^{*} \mathrm{PX}^{*} \mathrm{EX}\right)$
3. Calculate EX from the ETA formula
```
SCALAR LPROD AGGREGATE LABOR PRODUCTIVITY /1/,
CX COST OF X AT BASE YEAR PRODUCTIVITY /1/,
CY COST OF Y AT BASE PRODUCTIVITY /1/
LSO REFERENCE LEVEL OF LABOR SUPPLY/1/
ELS uncompensated ELASTICITY OF LABOR WRT REAL WAGE/1/
EX endowment of good x /1/
EL endowment of labor and leisure /120/;
```


\$ONTEXT

\$MODEL:LSUPPLY
\$SECTORS:

X	$!$	SUPPLY=DEMAND FOR X
Y	$!$	SUPPLY=DEMAND FOR Y

LS ! LABOR SUPPLY

```
$COMMODITIES:
```

 PX ! MARKET PRICE OF GOOD X
 PY ! MARKET PRICE OF GOOD Y
 PL ! MARKET WAGE
 PLS ! CONSUMER VALUE OF LEISURE
 \$CONSUMERS:
RA ! REPRESENTATIVE AGENT
\$PROD:LS
$0: P L \quad Q: L P R O D$
I:PLS Q:1
\$PROD: X
O:PX Q:1
$I: P L \quad Q: C X$
\$PROD: Y
$O: P Y \quad Q: 1$
\$DEMAND:RA $\mathrm{s}: 1$
E:PX Q:EX
$\begin{array}{lll}\mathrm{D}: \mathrm{PLS} & \mathrm{Q}: \mathrm{EL} & \\ \mathrm{D}: 1\end{array}$
$\mathrm{D}: \mathrm{PX} \quad \mathrm{Q}: 1 \quad \mathrm{P}: 1$
\$OFFTEXT
\$SYSINCLUDE mpsgeset LSUPPLY

```
    - Second step
LSO = LS.L;
LPROD = 1.01;
$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
ELS = round(100 * (LS.L - LSO) / LSO);
DISPLAY ELS;
SCALAR
\begin{tabular}{ll} 
ETA & UNCOMPENSATED ELASTICITY OF LABOR SUPPLY wrt NOMINAL wage \(/ 0.15 /\) \\
SHL & VALUE SHARE OF LEISURE \\
LSS & Time endowment \(/ 120 /\) \\
PRL & real PRICE OF LABOR /1.01/ \\
PRX & real PRICE OF COMMODITY X /1/;
\end{tabular}
```

```
SHL=(LSS-LS)/LSS
```

SHL=(LSS-LS)/LSS
-1/3;
-1/3;
EX=(ETA/(1+ETA)) * LSS *((1-SHL)/SHL) * (PRL/PRX);
EX=(ETA/(1+ETA)) * LSS *((1-SHL)/SHL) * (PRL/PRX);
DISPLAY EX;

```
DISPLAY EX;
```

- Third step: return to initial productivity (results will be different because EX키
LPROD = 1;
\$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;

```
    - Fourth step: repeat second step
LSO = LS.L;
LPROD = 1.01;
$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
ELS = (LS.L - LSO) / LSO;
OPTION ELS:4;
DISPLAY ELS;
```

Third step solution Fourth step solution

DUMMYO1 Artificial equation for model: LSUPPLY

	LOWER	LEVEL	UPPER	MARGINAL		LOWER	LEVEL	UPPER	MARGINAL
--- VAR X	.	18.922	+INF	.	- VAR X	,	19.322	+INF	.
--- VAR Y	.	50.539	+INF	.	- VAR Y	.	50.939	+INF	.
--- VAR LS	.	69.461	+INF	.	- VAR LS	.	69.565	+INF	.
--- VAR PX	.	0.998	+INF	-9.253E-8	- VAR PX	,	0.990	+INE	-9.385E-8
--- VAR PY	.	0.998	+INF	-9.253E-8	- VAR PY	.	0.990	+INF	-9.385E-8
--- VAR PL	.	0.998	+INF	.	- VAR PL	.	0.990	+INF	.
--- VAR PLS	.	0.998	+INF	-9.253E-8	- VAR PLS		1.000	+INF	-9.292E-8
--- VAR RA	-	151.317	+INF	$2.7703 \mathrm{E}-7$	- VAR RA	.	151.317	+INF	$2.7879 \mathrm{E}-7$
	599 PARAME	R ELS			0.0015	uncompe ITY OF WAGE	sated E ABOR WR	REAI	

Conclusion: The increase of labor productivity implies ELS=ETA

Exercise 3B:

We calibrate the labor supply elasticity by changing the utility function from
"s:1" to "s:SIGMA" (SIGMA is a scalar representing the elasticity of substitution between x, y, and L in final demand). Find the value of SIGMA consistent with a labor supply elasticity equal to 0.15

```
SCALAR LPROD AGGREGATE LABOR PRODUCTIVITY /1/,
CX COST OF X AT BASE YEAR PRODUCTIVITY /1/,
CY COST OF Y AT BASE PRODUCTIVITY /1/,
SIGMA ELASTICITY OF SUBSTITUTION IN CONSUMPTION /1/;
```

\$ONTEXT
\$MODEL:LSUPPLY
\$SECTORS:
$\mathrm{X} \quad$! SUPPLY=DEMAND FOR X
Y ! SUPPLY=DEMAND FOR Y
LS ! LABOR SUPPLY
\$COMMODITIES:
PX ! MARKET PRICE OF GOOD X
PY ! MARKET PRICE OF GOOD Y
PL ! MARKET WAGE
PLS ! CONSUMER VALUE OF LEISURE
\$CONSUMERS:
RA ! REPRESENTATIVE AGENT
\$PROD:LS
$\mathrm{O}: \mathrm{PL} \quad \mathrm{Q}:$ LPROD
I:PLS Q:1
\$PROD: X
$\mathrm{O}: \mathrm{PX} \quad \mathrm{Q}: 1$
I:PL $\quad Q: C X$
\$PROD: Y
$0: P Y \quad Q: 1$
I:PL $\quad \mathrm{Q}: \mathrm{CY}$
\$DEMAND:RA S:SIGMA
E:PLS Q:120
D:PLS $\quad \mathrm{Q}: 1 \quad \mathrm{P}: 1$
D:PX $\quad \mathrm{Q}: 1 \quad \mathrm{P}: 1$
$D: P Y \quad Q: 1 \quad \mathrm{P}: 1$
\$OFFTEXT
\$SYSINCLUDE mpsgeset LSUPPLY

```
    - First step
$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
SCALAR
            LSO REFERENCE LEVEL OF LABOR SUPPLY
            ELS uncompensated ELASTICITY OF LABOR WRT REAL WAGE;
```

```
    - Second step
LSO = LS.L;
LPROD = 1.01;
$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
ELS = (LS.L - LSO) / LSO;
DISPLAY ELS;
SCALAR
ETA UNCOMPENSATED ELASTICITY OF LABOR SUPPLY wrt nominal wage /0.15/
    SHL VALUE SHARE OF LEISURE
    LSUP LABOR SUPPLY /80/
    LEIS DEMAND FOR LEISURE /40/;
```


SIGMA $=$ ETA * (LSUP/LEIS) * $(1 /(1-$ SHL $))+1$;
 DISPLAY SIGMA;

- Third step: return to initial productivity (results will be different because EXFl LPROD $=1$; \$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
- Fourth step: repeat second step

LSO = LS.L;
LPROD $=1.01$;
\$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
$\mathrm{ELS}=(\mathrm{LS} . \mathrm{L}-\mathrm{LSO}) / \mathrm{LSO}$;
DISPLAY ELS:

	LOWER	LEVEL	UPPER	MARGINAL
- VAR X	-	40.460	+INF	-
- VAR Y	-	40.460	+INF	-
- VAR LS	-	80.119	+INF	.
- VAR PX	-	0.990	+INF	-2.347E-7
- VAR PY	-	0.990	+INF	-2.347E-7
- VAR PL		0.990	+INF	.
- VAR PLS	-	1.000	+INF	-2.313E-7
- VAR RA	-	120.000	+INF	$6.9596 \mathrm{E}-7$
580 PARAMETER ELS		$=$	0.0015	ELASTICITY OF LABOR W RT REAL WAGE
400 PARAMETER SIGMA		=	1.450 E	LASTICITY OF SUBSTIT IION IN CONSUMPTION

Conclusion: CES function allows to get ELS $\neq 0$ even with single source of income (labour).

Supplement Material to EXERCISE 3B:

How elasticity of substitution influence the results when labor productivity increases by 5% ?

Case 1: $\mathrm{s}=1$
Case 3: $s<1$

Case 2: $\mathrm{s}=0$
Case 4: $\mathrm{s}>1$

SOLUTION

st

$$
\begin{gather*}
\max U(X, Y, R) \\
P X * X+P Y * Y+P L S * R=120 \text { or } \tag{1}\\
P X * X+P Y * Y=P L * L S * \operatorname{prod} \tag{2}
\end{gather*}
$$

where LS - labor supply
R - leisure
PL - price of labor
PLS - price of leisure

The relationship between PL and PLS can be found from zero-profit condition for LS:

$$
\begin{align*}
& P L * L p r o d=P L S * 1 \\
& \frac{\boldsymbol{P L S}}{\boldsymbol{P L}}=\boldsymbol{L p r o d}=1.05 \tag{3}
\end{align*}
$$

The relationship between PX and PY can be found from zero-profit condition for X and Y :

$$
\begin{align*}
& P X * 1=P L * C X, \quad \text { where } C X=1 \rightarrow \frac{P X}{P L}=1 \\
& P Y * 1=P L * C Y, \quad \text { where } C Y=1 \rightarrow \frac{P X}{P L}=1 \\
\Rightarrow \quad & P L=P X=P Y \tag{4}
\end{align*}
$$

The budget constraint shows the relationship between LS and R:

$$
\begin{gather*}
120-P L S * R=P L * L S * L p r o d \\
\frac{120}{P L}-L p r o d * R=L S * L p r o d \\
\frac{120}{P L}=\operatorname{Lprod}(R+L S) \\
\frac{120}{L p r o d * P L}=\boldsymbol{R}+\boldsymbol{L S} \tag{5}
\end{gather*}
$$

This means that households income is measured by $\operatorname{Lprod}{ }^{*} P L \Rightarrow$ by $P L S$. Since default numeraire in MPSGE is households income $\Rightarrow P L S=1 \Rightarrow P L=0.952=P X=P Y$

Case 1: Cobb-Douglas function

$$
\max U=X^{\frac{1}{3}} Y^{\frac{1}{3}} R^{\frac{1}{3}}
$$

or linearized version: $\quad \max \ln U=\frac{1}{3} \ln X+\frac{1}{3} \ln Y+\frac{1}{3} \ln R$

$$
\begin{gathered}
\frac{M U x}{P X}=\frac{M U y}{P Y}=\frac{M U R}{P L S} \quad \Rightarrow \quad \frac{1}{3 * X * P X}=\frac{1}{3 * Y * P Y}=\frac{1}{3 * R * P L S} \\
\Rightarrow X * P X=Y * P Y=R * P L S
\end{gathered}
$$

We can conclude using (4):

$$
X=Y
$$

The same conclusion we will get for simplified function $U=X * Y * R$. Inserting the above relationship into the budget constraint:

$$
3 * P X * X=120
$$

Using (3), (4) and PL=1/1.05:

$$
\begin{aligned}
& P L * X=40 \\
& X=42=Y
\end{aligned}
$$

Using $X * P X=R * P L S$ and PLS=1:

$$
\begin{gathered}
P L S * R=40 \\
R=40
\end{gathered}
$$

Finally, using (5):

$$
L S=\frac{120}{1.05 * 0.952}-40=80
$$

part of MPSGE code:

RESULT:

SDEMAND:RA	$\mathbf{s : 1}$	
E:PLS	$\mathrm{Q}: 120$	
D:PLS	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
D:PX	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
D:PY	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
SOFFTEXT		
\$SYSINCLUDE mpsgeset LSUPPLY		
\$INCLUDE LSUPPLY.GEN		
SOLVE LSUPPLY USING MCP;		
LPROD = 1.05;		
\$INCLUDE LSUPPLY.GEN		
SOLVE LSUPPLY USING MCP;		

Case 2: Leontief function

$$
\max U=\min \{X, Y, R\}
$$

Substituting (4) in the budget constraint (1):

$$
\begin{gathered}
P L * X+P L * X+P L S * X=120 \\
X+X+1.05 * X=\frac{120}{P L} \\
X=\frac{120}{3.05 * P L}
\end{gathered}
$$

When PL=0.952:

$X=41.311=Y$

The last part is to get the labour supply using (5):

$$
L S=\frac{120}{1.05 * 0.952}-41.311=78.68
$$

part of MPSGE code:

Case 3 and 4: CES function

$$
\max U=\left(X^{\frac{\sigma-1}{\sigma}}+Y^{\frac{\sigma-1}{\sigma}}+R^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

$$
\begin{gathered}
M U x=\frac{\sigma}{\sigma-1} * U^{\frac{\sigma}{\sigma-1}}-1 * \frac{\sigma-1}{\sigma} * X^{\frac{\sigma-1}{\sigma}-1}=U^{\frac{\sigma}{\sigma-1}-1} * X^{\frac{\sigma-1}{\sigma}-1} \\
\frac{M U x}{P X}=\frac{M U y}{P Y}=\frac{M U R}{P L S} \Rightarrow \frac{U^{\frac{\sigma}{\sigma-1}-1} * X^{\frac{\sigma-1}{\sigma}-1}}{P X}=\frac{U^{\frac{\sigma}{\sigma-1}-1} * Y^{\frac{\sigma-1}{\sigma}-1}}{P Y}=\frac{U^{\frac{\sigma}{\sigma-1}-1} * R^{\frac{\sigma-1}{\sigma}-1}}{P L S}
\end{gathered}
$$

Using (4):

$$
\begin{aligned}
& \frac{M U x}{M U y}=\frac{U^{\frac{\sigma}{\sigma-1}-1} * X^{\frac{\sigma-1}{\sigma}-1}}{U^{\frac{\sigma}{\sigma-1}-1} * Y^{\frac{\sigma-1}{\sigma}-1}}=\frac{P X}{P Y} \Rightarrow \frac{X^{\frac{-1}{\sigma}}}{Y^{\frac{-1}{\sigma}}}=\frac{P L}{P L}=1 \Rightarrow X=Y \\
& \frac{M U x}{M U R}=\frac{U^{\frac{\sigma}{\sigma-1}-1} * X^{\frac{\sigma-1}{\sigma}-1}}{U^{\frac{\sigma}{\sigma-1}-1} * R^{\frac{\sigma-1}{\sigma}-1}}=\frac{P X}{P L S} \Rightarrow \frac{X^{\frac{-1}{\sigma}}}{R^{\frac{-1}{\sigma}}}=\frac{P L}{P L S}=\frac{1}{1.05} \Rightarrow P^{*} 1.05=\text { PLS } \\
& R^{-\frac{1}{\sigma}}=1.05 * X^{-\frac{1}{\sigma}} \\
& R=1.05^{-\sigma} * X
\end{aligned}
$$

When $\sigma=0.5$:

$$
R=\frac{X}{1.05^{0.5}}
$$

Inserting (4) into the budget constraint (2) when $\mathrm{PL}=1$:

$$
\begin{gathered}
2 X=(120-R) * 1.05 \\
2 X+1.05 * \frac{X}{1.05^{0.5}}=126 \\
X=\frac{126}{2+\frac{1.05}{1.05^{0.5}}}=41.657=Y
\end{gathered}
$$

Finally:

$$
\mathrm{LS}=120-\mathrm{R}=120-\frac{X}{1.05^{0.5}}=79.347
$$

part of MPSGE code:

\$DEMAND:RA	$\mathbf{s : 0 . 5}$	
E:PLS	$\mathrm{Q}: 120$	
D:PLS	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
D:PX	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
D:PY	$\mathrm{Q}: 1$	$\mathrm{P}: 1$
SOFFTEXT		
\$SYSINCLUDE mpsgeset LSUPPLY		
\$INCLUDE LSUPPLY.GEN		
SOLVE LSUPPLY USING MCP;		
LPROD = 1.05;		
SINCLUDE LSUPPLY.GEN		
SOLVE LSUPPLY USING MCP;		

RESULT:

	LOWER	LEVEL
--- VAR X	-	41.657
---- VAR Y	-	41.657
---- VAR LS	-	79.347
---- VAR PX	-	0.952
---- VAR PY	-	0.952
---- VAR PL		0.952
---- VAR PLS		1.000
---- VAR RA		120.000

When $\sigma=2$:

$$
\begin{gathered}
R=\frac{X}{1.05^{2}} \\
X=\frac{126}{2+\frac{1.05}{1.05^{2}}}=42.677=Y \\
\text { LS }=120-\mathrm{R}=120-\frac{X}{1.05^{2}}=81.29
\end{gathered}
$$

Part of MPSGE code:

```
$DEMAND:RA s:2
    E:PLS Q:120
    D:PLS Q:1 P:1
    D:PX Q:1 P:1
    D:PY Q:1 P:1
$OFFTEXT
$SYSINCLUDE mpsgeset LSUPPLY
$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
LPROD = 1.05;
$INCLUDE LSUPPLY.GEN
SOLVE LSUPPLY USING MCP;
```

RESULT:

	LOWER	LEVEL
---- VAR X		
---- VAR Y	\cdot	42.677
---- VAR LS	\cdot	81.290
---- VAR PX	\cdot	0.952
---- VAR PY	\cdot	0.952
---- VAR PL	\cdot	0.952
---- VAR PLS	\cdot	120.000
---- VAR RA		

Conclusion: (i) MPSGE defines budget equation as $P X * X+P Y * Y+P L S * R=120$ but not $P X *$ $X+P Y * Y=P L * L S * \operatorname{rrod}$ due to the way how we formulated the model ($\mathrm{D}:$ for $\mathrm{X}, \mathrm{Y}, \mathrm{R}$, but not just for $\mathrm{X}, \mathrm{Y})$. (ii) Lower substitution possibility between $\mathrm{X}, \mathrm{Y}, \mathrm{R}$ when income is fixed implies decrease of consumption (and labour) while increase of leisure.

